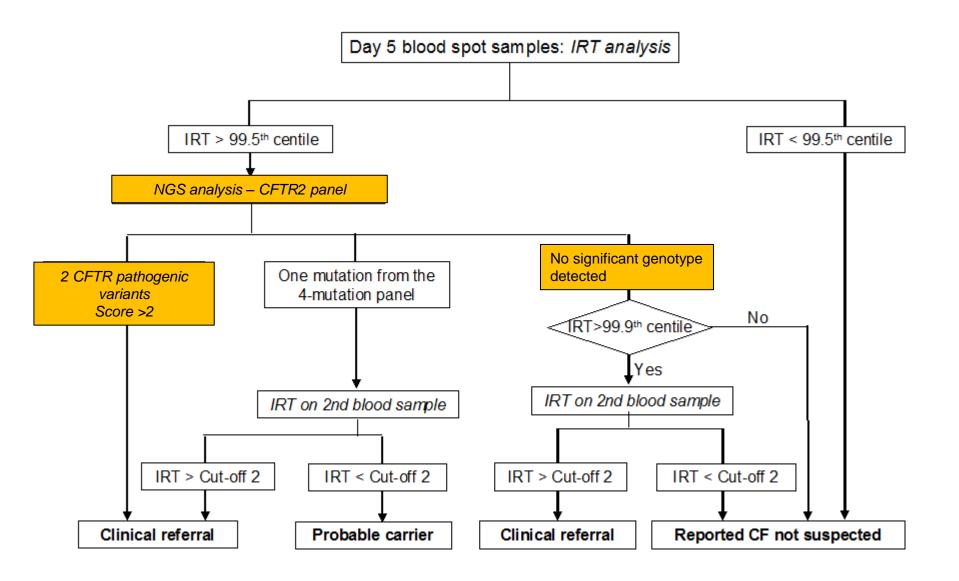

A pilot study for the application of Next Generation Sequencing in Cystic Fibrosis Newborn Screening

Mr Richard Kirk, Dr Elizabeth Sollars, Dr Mandy Nesbitt Sheffield Diagnostic Genetics Service

Dr Lynette Shakespeare, Prof Jim Bonham Regional Newborn Screening Service, Sheffield

Potential of NGS for CF NBS

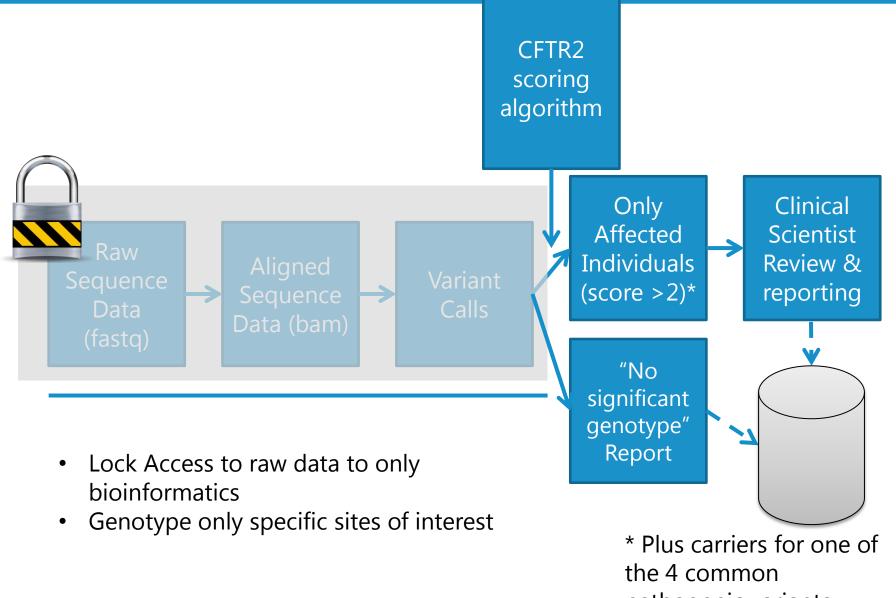

- Pros of our current approach
 - Protocol/programme currently works well
 - 97% sensitivity
- Cons of our current approach
 - 77 carriers identified for every 100 confirmed cases
 - 91% babies requiring 2nd bloodspot turn out to be CF not suspected
- Why introduce NGS?
 - Increased sensitivity, particularly for babies of 'noncaucasian' ancestry as the range of pathogenic variants covered can be increased without significant increase in cost.
 - Reduce number of babies requiring 2nd heelprick/bloodspot
 - Ultimately, eliminate identification of carriers

 \rightarrow 1 year pilot study, 75,000 babies began August 2018

Pilot study

Weekly workflow

NHS **Bloodspots/DNA** THURS Genomic DNA extracted from bloodspots (EZ1 – Qiagen) NGS of CFTR gene FRI/ AmpliSeq community CFTR panel SAT (Thermo Fisher) • Ion S5 XL (Thermo Fisher) **Analysis Pipeline** • Bespoke bioinformatics pipeline MON • 332 pathogenic variants (CFTR2) • 'Significant genotype' scoring algorithm **Review/reporting** MON/ • Web-based interface TUES • (Confirm pathogenic variants) • Issue reports



Variant description	Examples	Score
CF-causing	p.Phe508del, p.Gly542*, p.Arg117His-5T	2
Varying clinical consequence	p.Asp1152His, p.Arg117His-7T	1
Non-CF causing/ unknown significance	p.Arg31Cys, p.Ile148Thr	0 (excluded from panel)

'Significant genotype' - Only samples with a total/genotype score >2 are reported (*except* for carriers of one of the 4 common pathogenic variants).

Bioinformatics analysis pipeline

pathogenic variants

CF Status Check

Worklist 1809761

10 CF patients on worklist 1809761

☑ AFFECTED ☑ CARRIER_REPORT ☑ NO_SIG_GENOTYPE ☑ NOT TESTED

Sample	CF Status	Gaps File	Path to Results	
S1826345-02	AFFECTED	PASS	P:\S1826345-02	Copy path
S1826346-02	AFFECTED	PASS	P:\S1826346-02	Copy path
S1826351-02	CARRIER_REPORT	PASS	P:\S1826351-02	Copy path
S1826347-02	NO_SIG_GENOTYPE	PASS		
S1826348-02	NO_SIG_GENOTYPE	PASS		
S1826349-02	NO_SIG_GENOTYPE	PASS		
S1826352-02	NO_SIG_GENOTYPE	PASS		
S1826354-02	NO_SIG_GENOTYPE	PASS		
S1826356-02	NO_SIG_GENOTYPE	PASS		
S1826357-02	NO_SIG_GENOTYPE	PASS		
Download Results				

Data from Pilot study 1/8/18 to 30/4/19

- 54,000 samples analysed
- 215 samples with IRT > 99.5th sent for DNA analysis
 - 14 samples 'failed' on NGS (6.5%), so reported using CF4/EU2 only
 - 37 non-normal CF outcomes in this time
 - >>>

- 12 probable carriers (i.e. one pathogenic variant from CF4 + low second IRT)
- 25 referrals to paediatric specialist team "CF suspected"

16 would have been detected by the existing approach

- 13 with 2 pathogenic variants on CF4/EU2 panel
- 1 with 1 pathogenic variant from CF4 + high second IRT
- 2 with no significant genotype but high second IRT (initial >action limit 2)

9 were detected by use of NGS >>>

	Variant 1	Varant 2	Variant locations	Comments
1	ΔF508	c.297-3C>T; 4279insA	1 CF4, 1 NGS	Diagnosed antenatally (sibling affected). Sweat chloride 89.
2	1154insTC	5T (11TG)	2 NGS	CFSPID. Sweat chloride 21.
3	R117H (7T)	3849+10kbC>T	2 CF-EU2	CFSPID. Sweat chloride 27.
4	c.1029del	5T (11TG)	2 NGS	CFSPID. Sweat chloride 43.
6	ΔF508	5T (12TG)	1 CF4, 1 NGS	Complex referral - no outcome data
7	ΔF508	5T (11TG)	1 CF4, 1 NGS	Feedback awaited. Repeat IRT not requested.
5	ΔF508	F1052V	1 CF4, 1 NGS	Repeat DBS requested. Sweat chloride 10.
8	R117H (7T)	4326delTC	1 CF-EU2, 1NGS	Feedback awaited
9	ΔF508	R1070W	1 CF4, 1 NGS	Repeat IRT 91 (52). 2 previous sweats insufficient.

Data from other labs – a retrospective look at positive cases from 2nd bloodspot/IRT referrals

- Lab 1 (data from 2006-2018):
 - 35 with no or 1 mutation and CF confirmed 22 would have been picked up using NGS (63%)
- Lab 2 (data from 2008-2018):
 - 23 with no or 1 mutation and CF confirmed 18 would have been picked up using NGS (78%)

Conclusions?

- Technically feasible but challenging
 - Turnaround times OK
 - Failure rate reducing
 - Cost acceptable
- Avoids the need for a second IRT in 60-70% of cases, however some cases would be missed with the current NGS panel without 2nd IRT
- Some cases referred have an uncertain significance (CFSPID) – could be avoided by not reporting variants of varying clinical consequence
- Potential to adapt the panel and modify how it is used
- Insufficient evidence of benefit to adopt as it stands...

Sheffield Children's **NHS**

NHS Foundation Trust

