

100,000 Genomes Project: Cancer Programme Validating WGS for clinical use

Alona Sosinsky

Head of Cancer Analysis, Genomics England 10.06.2019

Whole Genome Sequencing results Genomic returned by June, 2019 – 12K patients

englar

Return of results: somatic small variants

Gene	GRCh38 coordinates ref/alt allele	Transcript	CDS change and protein change	Predicted consequences	Population germline allele frequency (1KGlgnomAD)	VAF	Alt allele/total read depth	COSMIC ID	Gene-level actionability	Variant- level actionability	Gene mode of action
JAK2	9:5073770 G>T	ENST00000381652	c.1849G>T p.(Val617Phe)	missense_variant	- 10.0004	0.46	56/121	<u>COSM12600</u>		Trial (ET) Trial (ET) Trial (PV) Trial (PV) Trial (PV) Trial (PMF) Prognostic (ET) Prognostic (MDS/MPN) Prognostic (MPN) Prognostic (PV) Prognostic (PMF) Prognostic (RARS-T)	oncogene
TP53	<u>17:7673806</u> <u>C>T</u>	ENST00000269305	c.814G>A p.(Val272Met)	missense_variant	- 10.0000	0.38	37/98	COSM10891 COSM99950 COSM3388172 COSM1645249	<u>Trial (AML)</u> <u>Trial (AML)</u>	<u>Therapeutic</u> (<u>MDS</u>) <u>Prognostic</u> (<u>MDS</u>)	both
TP53	<u>17:7674858</u> <u>C>G</u>	ENST00000269305	c.672+1G>C	splice_donor_variant	- -	0.43	50/116	N/A	Therapeutic (MDS) Trial (AML) Trial (AML) Prognostic (MDS)		both

TP53 mutations in AML patients are associated with a worse overall survival *Papaemmanuil et al. NEJM (2016)*

Validation of WGS against standard of care: panel testing

- 96 patients
- 3 Genomic Medicine Centres
- Lung and colorectal tumours
- Well-studied cancer genes
- Qiagen Human Clinically Relevant Tumour Panel, Thermofisher Oncomine Focus assay, Thermofisher Ion Ampliseq hot spot cancer panel (two out of three are ISO-accredited tests)
- The same DNA was used by both tests
- Additional validation experiment was performed against highconfidence high-depth exome data (TRACERx study):
 - SNV > 10% VAF: 99% recall, 90% precision
 - Indel > 10% VAF: 95% recall, 85% precision

Small variants validation

Confusion matrix	NGS panel positive	NGS panel negative	
WGS positive	True positive 155 variants	False positive 1 variants	
WGS negative	False negative 2 variants	?	

- Positive percentage agreement, PPA = 155/157 = **98.7%**
- Positive predictive value, PPV = 155/156 = 99.4%
- All discrepant variants had support < 5% in WGS
- There were too few indels to calculate the accuracy of indel calling separately

Return of results: somatic Structural Genomi Variants and Copy Number Aberrations

When connected to the Click to collapse/expand	Internet columns can be sorted by clicking on colum	ML 5q- syndrom	e with common deleted re	gion at 5q31-q32
Search: del		. ,		
Genomic coordinates	i		Туре	Cytological bands
3:11775-90719661			LOSS(1)	del(3)(p26.3;p11.1)
5:65357263-18128826	52		LOSS(1)	del(5)(q12.3;q35.3)
6:154481294 6:154481365			DEL	6q25.2
7:84086471 7:84086527			DEL	7q21.11
17:18000253 17:18000357		Chrs	DEL	17p11.2
19:38275666 19:38275970			DEL	19q13.2
19:38602868 19:38602924	Colo Colo		DEL	19q13.2
Showing 1 to 7 of 7				
	Oni			
	Chr8			
	Chr9	cytogenetic ar	alysis was not performed o	due to myelofibrosis

Myelodysplastic disorders carrying both isolated del(5q) and JAK2(V617F) mutation: Concise review, with focus on lenalidomide therapy Musto et al. Onco Targets Ther, (2014)

engla

Return of results: somatic Structural Genomic **Variants and Copy Number Aberrations**

engla

Validation of WGS against standard of care: FISH testing

- 46 patients
- 5 Genomic Medicine Centres
- Patients with pediatric ALL, AML, CLL, multiple myeloma, lymphoma
- Broad spectrum of variants: ABL2, BCR-ABL1, BCL6, CDKN2A, CSF1R, ETV6-RUNX1, IGH-MYC, IGH-BCL2, HLF, KMT2A, MECOM, MYC, PDGFRB, STIL-TAL1, TLX1, TLX3, TCL1, TCF3-PBX1, TRG, TRB, TRAD, ATM, TP53, FLT3 ITD, PML-RARA, RUNX1-RUNX1T1, CBFB-MYH11, CBFB-MYH11

 Additional data available: 80 ALL samples with FISH, SNP arrays, karyotypes, MLPA; FISH data for sarcoma patients; HER2 status for breast cancer patients

CNV validation

Confusion matrix	FISH positive	FISH negative	
WGS positive	True positive 46 variants	False positive 1 variant	47
WGS negative	False negative 10 variants	True negative 13 variants	23
	56	14	

- CNVs: Positive percentage agreement, PPA = 46/56 = 82%
- CNVs: Positive predictive value, PPV = 46/47 = 98%
- CNVs: False Positive Rate, FPR = 1/14 = 7%
- Discrepancies are due to: sub-clonal variants with < 15% VAF (3), low quality sample (3), low tumour purity sample (2)

SV validation

Confusion matrix	FISH positive	FISH negative	
WGS positive	True positive 25 variants	False positive 5 variants	30
WGS negative	False negative 1 variants	True negative 123 patients	124
	26	128	

- SVs: Positive percentage agreement PPA = 25/26 = 96%
- SVs: Positive predictive value PPV = 25/30 = 83%
- SVs: False Positive Rate, FPR = 5/128 = 4%

FLT3 ITD

Confusion matrix	FISH positive	FISH negative	
WGS positive	True positive 5 variants	False positive 0 variants	5
WGS negative	False negative 1 variants	True negative 7 patients	8
	6	7	

- CNVs: Positive percentage agreement, PPA = 5/6 = 83%
- CNVs: Positive predictive value, PPV = 5/5 = 100%
- CNVs: False Positive Rate, FPR = 0/7 = 0%
- Discrepancy is due to sub-clonal variant with < 5% VAF

Return of results: pan-genomic markers

Genomes with deficiency in DNA mismatch repair (MMR) machinery

Mutational signatures

C>T

T>A

T>C

Pan genomic markers

Validation of WGS against standard of care: IHC test for MMR genes

25 June 2019

Impact of WGS: molecular testing for colorectal tumours

By Nirupa Murugaesu

Strategy for utilising WGA

Current:

- 1. Enhance recruitment to existing clinical trials
 - Better curation of existing national stratified oncology trials: FOCUS-4, MATRIX/SMP2
 - Enhance recruitment to Phase 2 targeted therapy trials

Next steps:

- 2. Pan genomic markers
 - Utilise WGA for stratification as a companion diagnostic
 - Better molecular characterisation of tumours/patients
- 3. Designing clinical trials
 - Utilise WGA for stratification
 - To better identify potential biomarkers for stratification
 - Better molecular characterisation of tumours/patients

Acknowledgements

Bioinformatics team

Magdalena Zarowiecki

John Ambrose

Phill Carter

Jonathan Mitchel

Antonio Rueda-Martin

Daniel Perez-Gil

Javier Lopez

Susan Walker

Augusto Rendon

Clinical team

Shirley Henderson

Angela Hamblin

Nirupa Murugaesu

Clare Turnbull

Genomic Medicine Centres