Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

Keren Carss

Tuesday 27th June 2017

Inherited retinal disease (IRD)

- Phenotypically heterogeneous
 - Progressive or stationary
 - Rods or cones
 - Non-syndromic or syndromic
- Genetically and allelically heterogeneous
- Good candidates for WGS
- No large WGS studies of IRD published

- Identify pathogenic variants including intractable cases
- Explore advantages and disadvantages of WGS
- Identify novel IRD-associated genes and provide new insights into phenotypes and the genetic architecture of IRD

Cohort

- Part of NIHR BioResource-Rare Diseases study
- High-throughput sequencing on 722 inherited retinal disease (IRD) patients

- Phenotypes include RP, cone-rod dystrophy, Stargardt disease, Usher syndrome
- Most recruited at Moorfields Eye Hospital (London)
- Most had some previous negative genetic test

Methods

Pathogenic Variant Detection Rate

Sequencing Method	Total Cases	Cases Solved	Cases Partially Solved	Cases Unsolved
WGS	605	331 (55%)	31 (5%)	243 (40%)
WES	72	59 (82 <u>%</u>)	3 (4%)	10 (14%)
WES and WGS	45	14 (31%)	2 (4%)	29 (64%)
TOTAL	722	404 (56%)	36 (5%)	282 (39%)

- WES initially solved 59/117 (50%) cases. Subsequently 45/58 unsolved cases also underwent WGS.
- 96/152 (63%) with no prescreening solved

14 cases solved by WES then WGS

- Variant not covered by WES baits (n=3)
- Large deletion or indel (n=3)
- Called by WES but variant did not pass QC (n=3)
- Called but WGS performed to exclude other possibilities (n=5)

The Effect of Ethnicity

Likely Ethnicity	Total Cases	Cases Solved	Cases Partially Solved	Cases Unsolved
EUR	467	259 (55%)	23 (5%)	185 (40%)
SAS	123	70 (57%)	4 (3%)	49 (40%)
AFR	43	13 (30%)	4 (9%)	26 (60%)
EAS	13	1 (8%)	1 (8%)	11 (85%)
AMR	4	2 (50%)	1 (25%)	1 (25%)
TOTAL	650	345 (53%)	33 (5%)	272 (42%)

Likely ethnicity estimated from WGS data using principal component analysis. Table includes individuals who had WGS only. Abbreviations: EUR, European; SAS, South Asian; AFR, African; EAS, East Asian; AMR, Ad Mixed American.

66% of pathogenic variants in SAS individuals were homozygous, compared to 18% in EUR individuals

WGS: higher power to detect variants

- Structural variants
- Variants in GC-rich regions
- Variants in non-coding regions

WGS Increases Power to Detect SVs

Sequencing Regions of Extreme GC Bias

Pathogenic Variants in GC-Rich Regions

A Novel Pathogenic Intronic Variant

- 2 unrelated males with choroideremia
- Previously unreported deep intronic CHM Variant c.315-1536A>G
- Splice prediction analysis predicted introduction of cryptic splice acceptor site
- Inclusion of cryptic exon confirmed by RT-PCR

SCAPER

Case 1	Case 2	Case 3
WGS	WES	WES
UK	UK	USA
No family history	No family history	No family history
RP, DD, autism, and ADD	RP, possible mild DD	RP, obesity and DD
NM_020843: c.1116delT, p.Val373SerfsTer21	NM_020843.2: c.1495+1G>A	NM_020843.2: c.829C>T, p.Arg277Ter
NM_020843: c.2179C>T, p.Arg727Ter	NM_020843.2: c.3224delC, p.Pro1075GlnfsTer11	NM_020843.2: c.3707_3708delCT p.Ser1236TyrfsTer28

- SCAPER encodes S Phase Cyclin A-Associated Protein In The ER
- Widely expressed
- Involved in cell cycle progression

Closing Comments

- Largest study of IRD using WGS to date
- Heterogeneous cohort
- Overall 56% solved
- Advantages of WGS
- Unsolved cases
- Limitations of WGS

Carss et al., The American Journal of Human Genetics 100, 75-90, Jan 5, 2017

Acknowledgements

Patients and their families

Moorfields Eye Hospital, London

Gavin Arno Sarah Hull Samantha Malka Anthony T Moore Michel Michaelides Andrew R Webster

Addenbrooke's Hospital, Cambridge Louise Allen Geoff Woods

Great Ormond Street Hospital, London Jane Hurst Richard Scott Dorothy Thompson Camila Gabriel Rob Henderson Maria Bitner-Glindzicz

Guy's and St Thomas' Hospital, London Dragana Josifova Chris Patch

NIHR BioResource-Rare Diseases

Marie Erwood Alba Sanchis Juan Eleanor Dewhurst Detelina Grozeva Jonathan Stephens Kathleen Stirrups Sofie Ashford Karyn Megy Louise Daugherty Rutendo Mapeta Sri Deevi Fengyuan Hu

Queens' College Cambridge

Salih Tuna Tony Attwood Olga Shamardina Stuart Meacham Chris Penkett Matthias Haimel Marta Bleda Ernest Turro Stefan Graf Hana Lango Allen Willem Ouwehand F Lucy Raymond

FOUNDATION FIGHTING 3LINDNESS

kjn29@cam.ac.uk @kerencarss