

Nanopore long read sequencing for detection of point mutations and structural variants

Viapath Genetics, Guy's Hospital, London

Presented by: Kezia Brown

Nanopore for long read sequencing

- Why do we need long read sequencing?
- Amplification Targets
- Laboratory work
- Analysis
- Confirmations
- Summary
- Questions

WGS is Not "Whole Genome" Sequencing

Four types of known unassembled regions:

Image: NHBLI WGS Project

- 1) Telomeres
- 2) Centromeres
- 3) short-arms of acrocentric chromosomes (chr13,14,15,21,22, Y)
- 4) large heterochromatic regions (in chr1, 9, 16, Y).

All these regions involve repeat sequences

Other regions are challenging for current short read technologies:

- 1. Translocations in cancer
- 2. HLA typing
- 3. Trinucleotide repeat expansion
- 4. Structural variants
- 5. Pseudogenes gene paralogues
 - *CYP2D6, MYH6/7, CYP21B, PMS2 etc.*

MinION Nanopore Sequencing Barcoded amplicons for multiplexed processing

MinION Nanopore Sequencing

- Oxford Nanopore MinION uses strand sequencing
- 1D, 2D, 1D² kits
- Detects changes in current as different bases pass through the pore
- Basecalling performed by MinKNOW software
- Real time sequencing

MinION Nanopore Sequencing

Our experiments – Long read amplicon sequencing

• We performed multiplex analysis of barcoded *BRCA1*, *BRCA2*, *SMN1*, *HLA* and *LDLR* amplicons (3.6 to 16kb)

Gene	Exon(s)	Size (bp)	Variants
BRCA1	10	3688	1 point mutation, 3 deletions, 1 duplication, NA12878
BRCA2	11	5101	2 point mutations, 3 deletions, NA12878
SMN1	2 - 8	16434	2 point mutations, 2 duplications, NA12878
LDLR	2 - 8	11943	1 deletion, 2 duplications, NA12878
LDLR	8 - 15	12664	1 deletion, 1 duplication, NA12878
HLA Region		~5000	

Heterozygous c.4478_4481delAAAG p.(Glu1493fs)

p13 p12	o11.2 q11	q12.12 q12.3 q13	3.2 q14.11 q14.	2 q21.1 q21.31	q21.33 q22.2	q31.1 q31.2 q32.1	q33.1 q33.3 q34
- 4 32,912,950 bp I		32,912,960 	bp 	40 bp 32,912,970 bp I		32,912,980 bp 	
[0 - 1438]							
T T A A	ACA (CĂAAA K	TACTG.	A A G A A K E BRCA2	A G T G T S V	C C C A G T T P V	G G T A C G T

BRCA1 and BRCA2

Variant	Seen on Nanopore?
BRCA2	
Heterozygous c.4478_4481delAAAG p.(Glu1493fs)	Yes
Heterozygous c.6275_6276delTT p.(Leu2092fs)	Yes
Heterozygous c.5350_5351delAA p.(Asn1784fs)	Yes
Heterozygous c.4576dupA p.(Thr1526fs)	Yes
Heterozygous c.5682C>A p.(Tyr1894Ter)	Yes
BRCA1	
Heterozygous c.1961delA p.(Lys654fs)	Yes
Heterozygous c.2475delC p.(Asp825fs)	Yes
Heterozygous c.3607C>T p.(Arg1203Ter)	Yes
Heterozygous c.3400G>T p.(Glu1134Ter)	Yes
Heterozygous c.3358_3359delGT p.(Val1120Ter)	Yes

SMN1: Ex2-8

SMN1 gene = ~28kb

		UCSC Genome Bro move <<< < < >	wser on Hu >> >>> zoom i 838 28,071 bp.	man Feb. 2009 (G n 1.5x 3x 18x base z rter position. gene symbol HGVS	RCh37/hg19) corn out 1.5x 3x	Assembly 10x 100x		
ar	5 (e13.2) [15.35 E20E8018.1E0E80 [1E0136]		11 1250 12 12 13 13 10			national <mark>et al social a la social de cate</mark>	1200 (1957-19 1975-14 1975-1 1975-1975-19	
	7e, 225, eeej	14 kb;	UCBE Genes (Ref)	76,205,400 Int. Deviliant, CCD9, Fram, TRANS &	Cossarat ive Genos (cp)	1 POIS 70,240, 400	76,245, eeej	
	BC445309				214G #			
				Refiles Cores				
╡			rue	licational sequences in scientifi	· Writ I Chas	1		111

Amplicon Exon 2-8 size: ~16kb

SNPs:	SNP 1		SNP 2		SNP 3		SNP 4		SNP 5	
Reads aligning	ads aligning									
to:	SMN1	SMN2	SMN1	SMN2	SMN1	SMN2	SMN1	SMN2	SMN1	SMN2
Read Depth	97	246	87	249	84	217	92	193	90	255
A	14%	93%	0%	2%	89%	1%	87%	6%	16%	85%
С	2%	2%	80%	2%	1%	0%	0%	9%	4%	0%
G	81%	6%	9%	5%	10%	98%	13%	82%	80%	14%
т	0%	0%	10%	91%	0%	1%	0%	3%	0%	0%

LDLR Exon 7 deletion

LDLR gene = ~44kb

LDLR exon 7 deletion breakpoint confirmation (784bp)

Alu-mediated homologous recombination

LDLR Exon 13-14 deletion

LDLR gene = \sim 44kb

LDLR Exon 13-14 deletion

Highly repetitive region with stretches of PolyTs

LDLR Exon 13-14 deletion

UCSC output of our deletion

The only large gap in Alu elements is at the exons themselves

Alu repeat elements

Preliminary 1D² data – NA12878

1D²

1D vs 1D²

- Increased mean phred-scaled base quality score
- Some Q scores now reaching 40+
- Increased mapping quality
- Reduction in observed error rate compared to reference sequence

Conclusions

- All 10 variants in *BRCA1* and *BRCA2* were correctly identified, however there were also false positives detected due to systematic (non-random) errors in 1D data.
- Accurate identification of two large deletions (3.3kb and 784bp) at a base pair level.
 - Sanger analysis identified highly repetitive regions and RepeatMasker identified Alu repeats flanking the 784bp deletion, indicating Alumediated homologous recombination
 - Confirmations of the 3.3kb deletion are still ongoing
- It is possible to differentiate between SMN1 and it's pseudogene SMN2 using long reads and alignment in BWA MEM.

Conclusions

- Achieved consensus accuracy with 2D reads
- Data analysis is still in progress for HLA
- Random error rates are tractable by consensus alignment and oversequencing
- Providing systematic errors are avoided, Nanopore sequencing can deliver unique tools for clinical use and point of care testing
- Currently testing the newly released 1D² kit on our previous NA12878 fragments, analysis still ongoing however preliminary data is looking very promising.

Acknowledgements

Viapath Genetics Laboratory, Guy's Hospital

- Andrew Bond
- Graham Taylor
- Michael Yau

Clinical Transplantation Laboratory, Guy's Hospital

- Robert Collins
- Prof. Jonathan Edgeworth, Medical Director
- Viapath Innovation Fund